
HIGH PENETRATION PV INTERCONNECTION MODELING AND REDUCTION OF DISTRIBUTION FEEDERS

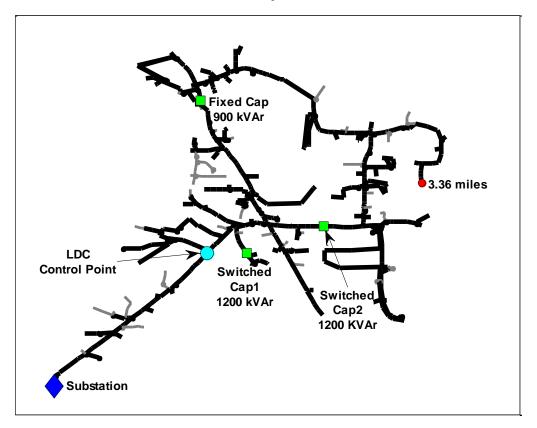
Matthew J. Reno^{1,2}, Robert J. Broderick¹, Kyle Coogan², Jimmy Quiroz¹, and Santiago Grijalva²

¹ Sandia National Laboratories ² Georgia Institute of Technology

Distribution System Modeling - OpenDSS

- OpenDSS solves the power flow
 - Open source three-phase distribution system simulation software from EPRI
- OpenDSS is controlled from MATLAB through COM server
 - Integrates solar data, perform postsimulation analysis, and loop through scenarios
- Sandia toolbox GridPV to interface between OpenDSS and MATLAB

Distribution Modeling and Model Reduction

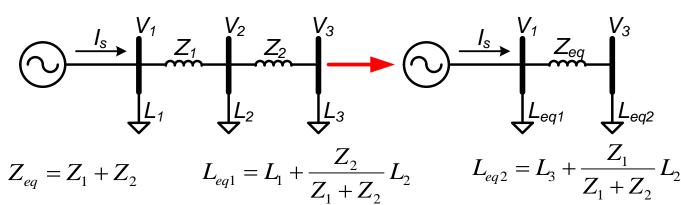


Distribution Feeder Modeling

- 19.8 kV distribution system, LTC with LDC, five feeders
- Feeder 7.5 MVA peak load, two switched capacitors
- PV scenarios at 100% of feeder peak load

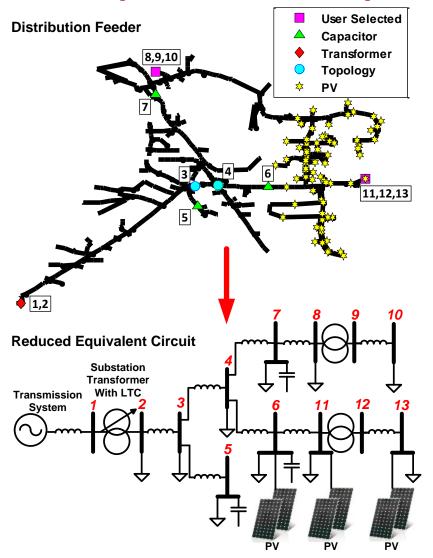
Circuit Reduction Motivation

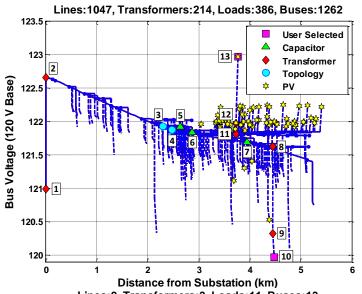
- A full detailed model of the distribution system can be time consuming to produce and to enter into simulation software. A reduced circuit also improves the ease of converting from one software package to another with few line segments and no propriety full feeder models
- Time-series simulation of a large distribution system at a high timeresolution requires significant computational processing. Stochastic simulations or multiple study scenarios also involve large amounts of computation for full circuit models
- Circuit reduction provides faster and more accurate interconnection screening criteria by reducing the circuit to a simpler equivalent representation with only the key circuit parameters

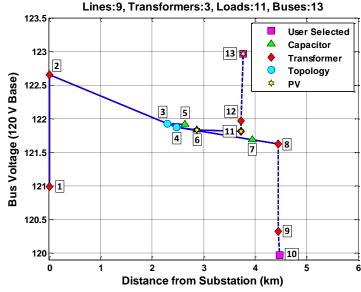


Load Bus Reduction Formulation

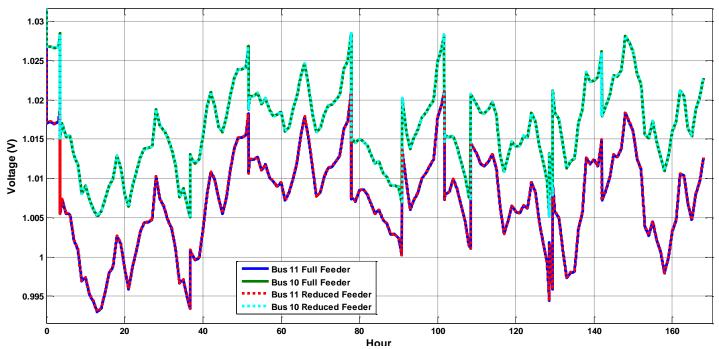
- Reduce a single load bus into adjacent buses
- Assumptions fixed current loads, balanced system
- Ability to apply recursively and to branches
- Fully equivalent circuit voltage, line losses, topology
- Complete proofs and methodology shown in SAND report
 - M. J. Reno, R. J. Broderick, and S. Grijalva, "Formulating a Simplified Equivalent Representation of Distribution Circuits for PV Impact Studies," Sandia National Laboratories, 2013.







Complex Feeder Representation



High Penetration PV Deployment Webinar Series Distribution Modeling and Model Reduction

Validation and Percent Reduction

	Full Circuit	Reduced Circuit	% of Original
Time (seconds) to perform a week	837.94	15.48	1.85%
simulation at 1-second resolution			
Circuit – Number of Lines	1047	8	0.76%
Circuit – Number of Transformers	214	2	0.93%
Circuit – Number of Loads	386	10	2.59%
Circuit – Number of Buses	1262	11	0.87%

Conclusions

- Circuit reduction allows high-resolution detailed models to be run efficiently and accurately
- A method was developed for simplifying the complex system to an equivalent representation of the feeder with fewer buses while maintaining an electrically equivalent feeder and topology
- Circuit reduction was validated to be equivalent for timeseries simulations with time-varying load and variable solar generation

References

- M. J. Reno, K. Coogan, R. J. Broderick, and S. Grijalva, "Reduction of Distribution Feeders for Simplified PV Impact Studies," in IEEE Photovoltaic Specialists Conference, Tampa, FL, 2013.
- M. J. Reno, R. J. Broderick, and S. Grijalva, "Formulating a Simplified Equivalent Representation of Distribution Circuits for PV Impact Studies," Sandia National Laboratories SAND2013-2831, 2013.
- R. J. Broderick, J. E. Quiroz, M. J. Reno, A. Ellis, J. Smith, and R. Dugan, "Time Series Power Flow Analysis for Distributed Connected PV Generation," Sandia National Laboratories SAND2013-0537, 2013.

Q &A AND DISCUSSION

Matthew Reno – <u>mjreno@sandia.gov</u> Robert Broderick – <u>rbroder@sandia.gov</u> www.sandia.gov/pv

